

Deployteq Datamodel REST API
User manual

2

Content

Introduction 3

Requirements 3

Datamodel 3

REST requests 5

Basics 5

REST URLs 5

REST methods 6

REST requests 7

Query parameters 7

Request body 7

REST responses 7

Response codes 7

Headers 8

Body 9

Examples 9

Datamodel description 9

Simple data requests 10

Complex data requests 11

Restricting selected data 14

Appendices 14

Supported data types 14

Datamodel example documentation 15

3

Introduction
Deployteq Extended Data allows you to define a model for data that can be related to customers
present in the Deployteq CRM. For more information on Deployteq Extended Data please refer to
the appropriate documents.

This manual describes how to access the data that are stored as Deployteq Extended Data by
way of the public REST API (Application Programming Interface). This interface allows the
following operations on the data contained in a data model:

• reading

• inserting

• updating

• deleting

As an added feature, the REST API is self-documenting, in that you may request meta-information
on the actual data model using the REST API itself.

Requirements
In order to use the REST API you need the following at your disposal:

• Any programming environment that allows you to make HTTP requests and process
the responses will allow you to make REST API calls. In particular, you need to be able
to generate and parse JSON (JavaScript Object Notation).

• You need a base URL and an access token, that you may obtain by requesting these
at Deployteq. Note that if you already have a SOAP token for the brand you wish to
access, you may also use this with the REST API.

Datamodel
This manual uses a simple data model as the basis for explaining how to use the REST API.
Suppose we're tracking orders at a restaurant that delivers pizzas. A customer may have placed
any number of orders, and each order may contain any number of pizzas.

4

The choice of pizzas however is from a menu which is the same for all customers. This is
expressed in the datamodel displayed in Illustration 1.

Illustration 1: Schematic model of orders for a customer.

The depicted customer has placed three orders over time, the first two orders containing three
different types of pizza, and the third order only one. The ordered pizzas refer to a list that
contains information on the pizzas themselves.

In the schematic these references are only displayed for the first order. Each customer in the
Deployteq CRM has a record with orders, but these all refer to the same list of pizzas.

The design described above is expressed in the model displayed in Illustration 2.

Illustration 2: Data model of the pizza orders.

5

The model has the following properties:

• The customer table is always defined, and has no columns, since the customer data
are stored in the Deployteq CRM.

• A customer contains one or more orders. In this simple model an order has a delivery
address, a text field for remarks, and a status flag indicating whether or not the order
has been delivered.

• An order contains one or more ordered pizzas. An ordered pizza stores the type of
pizza, the number of pizzas ordered for this type, and another text field for remarks.

• An ordered pizza looks up additional information on the pizza by means of the pizza
column, which actually stores a reference to the pizza table.

REST requests

Basics
The basic concept behind REST (REpresentational State Transfer) is twofold:

• A resource is uniquely identified by a URL.

• Operations are implemented as HTTP requests using a specific method.

By making correctly composed requests to a specific URL using the correct HTTP request method,
all operations provided by the API can be performed.

REST URLS
The base URL for the Deployteq Datamodel REST API is:

The domain name depends on the portal and brand you intend to make requests for. Addressing
resources in the data model is done by appending the resource names and when necessary the
resource ids to the URL. For example, the URL

accesses all resources in the pizza table.

6

In this example and all examples below the URL is displayed shortened, but of course all requests
need to be done using the complete URL. The URL

identifies only the pizza with id clang_523ae306ee3bf in the pizzas table. All resources in tables in
the data model automatically receive an id field named clang_id with a generated unique
content with the prefix 'clang_'.

It is not possible to assign ids using the API or any other way. A special id is used for the customer
table. Customers are assigned the Deployteq CRM customer id, prefixed with 'clang_'. As an
example, the record for the Deployteq customer with customer id 42 is addressed as

When tables are related using a contains relation, they are addressed as subresources within the
resource that contains them. For example

accesses all orders by the customer with id 42. Taking it one step deeper

points to all the pizzas in the order with id clang_523ae3385d12c for the customer with id 42.

When a subresource is requested, the URL must identify all containing resources. For example, it is
not possible to access order data without specifying the customer. The following URL will return
an error:

NB: the customer table is always defined. Regardless of the locale you may be working in in
Deployteq, the REST API only recognizes the name 'customer'.

REST METHODS
The REST API supports the following methods. The results of the request may vary depending on
whether you specify an id in the resource URL.

HTTP method without id with id

GET return all resources return identified resource

POST add new resource invalid request

7

PUT invalid request update identified resource

DELETE invalid request delete identified resource

REST requests
QUERY PARAMETERS
Requests are made to the URL that identifies the correct resource, using one of the described
methods. Additional parameters are passed in the query string of the request.

Parameter Value Remarks

format 'json' (default) or 'html' 'html' returns documentation
rather than data

token the authentication token mandatory

fields[] limit the returned data may occur more than once

REQUEST BODY
In case of POST or PUT requests, the actual resource data are passed in the request body. These
data need to be sent as JSON. In case of GET and DELETE requests, the request body should not
be present.

In Appendix - Supported Data Types the data types supported by the REST API are described.

REST responses
RESPONSE CODES
The REST API responds using the following response codes.

Code Message Meaning

200 Ok The request completed successfully

304 Not modified The request returns the same data as a previous
GET request with the same properties.

400 Bad request The request is incorrectly formulated.

8

401 Unauthorized The request is not done with sufficient
authorization.

403 Forbidden The request is not allowed access to the resource.

404 Not found The requested resource is not present.

405 Method not allowed The requested operation is not allowed.

410 Gone The requested resource is not present, and no
alternative location is known.

423 Locked The requested resource is present, but access to
the resource is not possible at the time of the
request.

500 Internal server error An error occurred while processing the request.

501 Not implemented The requested method is not implemented in the
API.

503 Service unavailable The REST interface is not accessible at the time of
the request.

The exact nature of any errors (codes in the 400 range) may depend on the exact request.

HEADERS
REST responses provide the usual HTTP response headers, and the REST interface may add
custom headers.

Header Content

X-Resource The URL of the resource that was created or
modified.

X-Clang-API-Error Additional information in case an error was
returned.

In case of POST and PUT requests, no data are returned in the response. If the inserted or updated
data are required, an additional GET request should be performed to the URL provided in the X-
Resource header.

9

BODY
Only in the case of GET requests will a REST response contain data in the response body, in the
form of JSON.

The data returned by the REST interface will contain the information described in the data model,
and add metadata that can be recognized by the prefix 'clang_' to the field names. The following
metadata may be present in the data:

Field Value

clang_id The id of the resource, which may be used in request URLs.

clang_createdat The timestamp of creation of the resource.

clang_createdby The Deployteq user that created the resource, often the user
associated with the API token.

clang_modifiedat The timestamp of the last modification of the resource.

clang_modifiedby The Deployteq user that last modified the resource, often the user
associated with the API token.

Note that you can't set or modify metadata, it is maintained automatically by the API.

Examples
This chapter describes the step-by-step process of maintaining data in the data model using
examples of requests and responses. In the requests we make use of a dummy access token
and a non-existing domain name. Please replace these with the values appropriate for your
environment.

DATAMODEL DESCRIPTION
The structure of the data model can be directly requested using the REST API.

A GET request with a 'format' query parameter containing 'html' and a valid token will return a
description of the data model. See appendix Datamodel Example Documentation for the
document of the model used in this manual. This document was requested with the URL

For brevity we will be shortening the access token in further examples.

10

SIMPLE DATA REQUESTS
Assuming we're starting out with a completely empty datamodel, we need to add data before
we can continue. Inserting is done by using POST requests. First we're adding some pizzas to the
menu by using a POST request to the URL

The body consists of the following JSON:

If this request is completed successfully, the response will contain an X-Resource header:

Note the id in the URL. We can now retrieve the data from the model using a GET request this URL.
We can omit the 'format' header, since JSON is the default format, but we need to add our token:

The response contains the information we sent, and the metadata the API added:

Suppose we wanted to change the name of this pizza. We would use the exact same URL, but
instead of a GET we would use a PUT request. In the body we pass any properties that we wish to
change:

{

“name”: “Napolitana”

}

{

"name":"Napolitana",

"clang_id":"clang_523c0bc14a1bb",

"clang_createdat":"2013-09-20 10:48:01",

"clang_createdby":"User",

"clang_modifiedat":"2013-09-20 10:48:01",

"clang_modifiedby":"User"

}

11

If the request is processed correctly, we receive another response with a 200 code and the same
resource URL. Another GET request will confirm that the information has actually been updated:

Finally, if we wanted to remove the resource, we could use the URL again, but this time with a
DELETE request. This request will return no data or resource headers. The success of the request is
indicated by the response code.

To confirm this, we can test whether the resource has been removed by doing another GET
request to the resource URL. This will return a response code 404, with an additional response
header

Note that we can also do a GET request without specifying the id of the resource. The response
will consist of all data that the URL refers to. This may return a very large amount of data, and
therefore should be used with care.

COMPLEX DATA REQUESTS
The examples above are for a simple table, but can be extended to more complex situations with
related tables. As an example, let's insert an order.

{

“name”: “Quattro Formaggi”

}

{

"clang_createdat":"2013-09-20 10:48:01",

"clang_createdby":"User",

"clang_id":"clang_523c0bc14a1bb",

"clang_modifiedat":"2013-09-20 11:19:02",

"clang_modifiedby":"User",

"name":"Quattro Formaggi"

}

12

Assuming there is a customer in the Deployteq CRM with id 42 and a set of pizzas in our data
model, we can compose the following request body:

In this order we set the properties of the order itself, but also immediately add two pizzas to the
order. A few important observations apply to the request body:

• We can refer to records in the lookup table containing the pizzas themselves by the
value of the field in the lookup table. We created a lookup relation between the pizza
field in the orderedpizza table and the name field in the pizza table. By referring to the
pizza by name in the order, the data model will create the correct reference.

• We may omit any fields that we don't need, such as the remarks field in the second
ordered pizza. Note that the reference field for the lookup table may also be omitted.
The request will succeed, and the record will be inserted, but any attempt to look up
the related data will fail.

If we do a POST request to the following URL

the order is added to the customer record. A GET request to the returned resource URL confirms
this:

{

"address": "My place",

"remarks": "Bang on the door",

"delivered": false,

"orderedpizza" : [

{

"pizza": "Napolitana",

"number": 1,

"remarks": "Hold the olives!"

},

{

"pizza": "Quattro Stagioni",

"number": 2

}

]

13

Note how the references to the pizzas have been resolved. Actually, we also could have used the
ids of the pizzas while inserting the order.

Now that the order has an id that is returned in the X-Resource header we can add an
orderedpizza record to this order by doing a POST request to the following URL

with the body of the request containing just the orderedpizza record:

{

"address":"My place",

"remarks":"Bang on the door",

"delivered":"FALSE",

"orderedpizza":[

{

"pizza":"clang_523ae32af3d75",

"number":1,

"remarks":"Hold the olives!",

"clang_id":"clang_523c3543dc383"

},

{

"pizza":"clang_523ae358a9142",

"number":2,

"clang_id":"clang_523c3543dc3ec"

14

The returned X-Resource will point to the inserted orderedpizza record. Updating or deleting the
data works as demonstrated earlier. For example, updating the number for one of the ordered
pizzas can be done by addressing the ordered pizza in the URL

and updating the properties by PUT-ting the following data:

Deleting this order can be done by using the same URL and sending a DELETE request.

RESTRICTING SELECTED DATA
In GET request the total returned set of information may become very large. Therefore it is
possible to specify the fields that a GET request should be restricted to, by using one or mode
'fields[]' parameters on the query string. For example, using the following URL

will return a list of all ordered pizzas from all customers, including remarks. Since the 'clang_id'
fields are not selected, the complete dataset is anonymized. If no 'fields[]' parameters are
present on the query string, all fields will be returned.

Appendices
SUPPORTED DATA TYPES

Data type Examples Remarks

String "This is a string." Limited to 1048576 characters.

Date "2013-09-23"

"October 1, 2013"

See
http://www.php.net/manual/en/datetime.formats.php
for supported formats.

http://www.php.net/manual/en/datetime.formats.php

15

Time "23:25:00"

"4PM"

See
http://www.php.net/manual/en/datetime.formats.php
for supported formats.

Date and
time

"2013-09-23, 16:00:00"

"October 1, 2013, 4PM"

See
http://www.php.net/manual/en/datetime.formats.php
for supported formats.

Yes/No 1

"true"

Boolean type: 1, "true", "on", and "yes" resolve to true, all
other values resolve to false.

Number 42 Signed integer number.

Decimal
number

3.1415 Real number with decimal point.

Request data are validated against the defined types, and the REST API will return an error when
validation fails. The X-Clang-API-Error will contain more information on the offending data.

DATAMODEL EXAMPLE DOCUMENTATION
When the documentation for the model described in this manual is requested from the API, the
following information is returned.

Extended data model description for brand example

Table: customer

This is a system table which has no directly accessible data.

Defined relations

● Table customer contains one or more entries from table order

Table: order

Defined columns

Name Type Description

address string

http://www.php.net/manual/en/datetime.formats.php
http://www.php.net/manual/en/datetime.formats.php

16

remarks string

delivered boolean

Defined relations

• Table order contains one or more entries from table orderedpizza

• Table customer contains one or more entries from table order

Table: orderedpizza

Defined columns

Name Type Description

pizza string

number number

remarks string

Defined relations

• Table order contains one or more entries from table orderedpizza

• Column pizza in table orderedpizza refers to column name in table pizza

Table: pizza

Defined columns

Name Type Description

name string

Defined relations

• Column pizza in table orderedpizza refers to column name in table pizza

	Introduction
	Requirements
	Datamodel
	REST requests
	Basics
	REST URLs
	REST methods

	REST requests
	Query parameters
	Request body

	REST responses
	Response codes
	Headers
	Body

	Examples
	Datamodel description
	Simple data requests
	Complex data requests
	Restricting selected data

	Appendices
	Supported data types
	Datamodel example documentation

